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Abstract

This paper examines house price index methodology and explores what makes
makes an index both practical and representative. Two approaches are investigated:
predictive ability (quantitative) and index structure (qualitative). Five indices are
analyzed, four of which are repeat sales indices in the traditional sense and an autore-
gressive index which makes use of the repeat sales idea but includes single sales as well.
The autoregressive index has the best predictive performance.
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1 Introduction

Over the past few decades, a number of indices have emerged as more people have looked to
the housing market for investment opportunities. In addition, with the current market col-
lapse, housing indicators have become increasingly important in the quest for understanding
how such markets operate. The question that still remains is: How do we know how good
an index is? Clapp, et al write that “...a residential price index should represent the price
change experienced by a typical house within the geographical area covered by the index [6,
p. 270].” The most simple index, is that of a median index such as one published by the
National Association of Realtors. However, this index is subject to criticism.

The types of homes sold at different times may vary. Therefore changes in the reported
index between times (seasons or even across years) may be due to the different composition of
homes sold rather than reflecting real changes in the housing market. While it is possible to
apply smoothing procedures to mitigate this issue; however, there are a few more criticisms
of median indexes. New homes tend to be more expensive than equivalent older homes and
it has been suggested that including these into the median index means that the price index
will be biased upwards. Furthermore, all sales are treated as if they were single sales in
a median price index. However, many homes sell multiple times in the time period–this
information on repeat sales is ignored with a mean or median price index. Note that a mean
house index is also subject to the same composition problem as the median index.

Bailey, Muth, and Nourse (1963), introduced the landmark concept of repeat sales analysis.
Assuming a house has no changes made to it, to assess how prices change over time, one
need only to look at the difference in sale prices of the same house. This approach solves
the issue of varying composition which mean and median indices suffer from. Subsequent
researchers have expanded upon this idea by incorporating various additional features, in an
effort to improve index estimates. The most significant, and widely used, development was
by Case and Shiller (1987, 1989) who argued that gap times between sales have an effect
on sale price differences. The Case and Shiller method is used to compute the Conventional
Mortagage Home Price Index released quarterly by Freddie Mac and Fannie Mae. These set
of indices cover numerous US cities and regions [15].

There has been much criticism of repeat sales methods, the main issue being that repeat
sales indices omit homes that sell only once from analysis which, most importantly, includes
new home sales. As a result, the indices are computed from a relatively small subset of
all home sales. Consequently, the indices may be unrepresentative of the housing market
as a whole especially since new homes tend to be more expensive than older ones. Despite
this concern, such procedures have been wholeheartedly adopted by the real estate sector.
A number of agencies, including Standard and Poor’s and the Office of Federal Housing
Enterprise (OFHEO), release indices based on the Case-Shiller method.

We examine five repeat sales indices here: the Bailey, Muth, and Nourse index (hereby re-
ferred to as the BMN), the Case and Shiller method (C-S), the Home Price Index produced by
the Office of Federal Housing Enterprise Oversight (OFHEO), the S&P/Case-Shiller Home
Price Index (S&P/C-S), and an alternative repeat sales index, the autoregressive index (AR
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index) introduced by Nagaraja, Brown, and Zhao (2010). This index combines information
from both repeat and single sales, with the former being given a higher weight; moreover, ad-
vantageous properties follow naturally from the statistical model. For comparison purposes,
we also include the median price index as a baseline index.

The goal of this paper is to investigate which useful characteristics each house price index
has. As each index employs different techniques, it is important to know whether these
variations have an effect on the resulting indices and predictions. We will evaluate these
indices using a two-pronged approach: (a) analyzing the components of each index along
with the statistical structure and (b) comparing estimates of individual house prices from
each index 1.

The second approach requires some justification. Generally, to determine how well a
model works for its prescribed purpose, we check with the “truth” either through real data
or through simulation. Neither of those techniques can be used here. We do not know the
true index value so we cannot compare our estimated index with this; on the other hand,
each of these indices assumes a different model for house prices so we cannot use simulation
to compare indices. A third option is to examine predictions of the individual house prices
as a way of determining the efficacy of the index. The claim here is that methods which
produce better predictions, are better models, and thus have more accurate indices. The
other approach are more theoretical; comparing predictions is a quantitative method of
analysis.

We start in Sec. 2 with a brief description of each index and in Sec. 3, a review of criticisms
of repeat sales methods which have been raised in the literature. A technical analysis of the
statistical properties of each index can be found in the appendix. The second part of this
paper focuses on the practical differences among the five methods. The data used are from
home sales from twenty US cities during the period of July 1985 through Septembter 2004.
We use these data in Sec. 4 to compare the indices produced from each method and prediction
of house prices using each method. We conclude in Sec. 5.

2 Background and Literature Review

The Bailey, Muth, and Nourse method (1963) uses linear regression to compute price index
values by utilizing log prices differences between pairs of sales of a house. Essentially the log
price difference between a pair of sales is thought to equal the difference in the respective log
indices in addition to a homoscedastic error term. Therefore, only houses which have been
sold twice are used to calculate the index; the remaining observations are omitted. Homes
which are known to have undergone significant improvement or degradation are in principle
also excluded from the analysis. This is because for such homes, the previous sale price is

1In this step, we do not attempt to forecast future individual home prices. None of the methods have this
feature. Rather, house prices will be estimated using the fitted model. In essence we are predicting those
prices and will use the terms “estimation” and “prediction” interchangeably in this context.
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not considered an appropriate surrogate for hedonic information2.
Case and Shiller (1987, 1989) expand the BMN setup by assuming that the error terms

are heteroscedastic. They reason that the length of time between sales should increase the
variance of the log price differences between sale pairs. To compute the house price index
while accounting for heteroscedasticity, they follow the BMN procedure but add a small
twist: when constructing estimates, the observations are weighted depending on the gap
time between sales. Sale pairs with larger gap times are given lower weights. There are
two independent components to this variance: a fixed component and a variable component
which grows as the gap time increases.

The Office of Federal Housing Enterprise Oversight (OFHEO) releases a repeat sales index,
the House Price Index (HPI) which is based on the BMN method. Like the Case-Shiller
method, a heteroscedastic error term is incorporated but the form of the error term is
different. One difference is that the fixed component of the variance is eliminated–this is to
avoid problems in the weighting step of the estimation procedure. The second is that the
error terms are not independent across multiple sales of the same house. The effects of these
alterations will be discussed in more detail in Appendix A.

Standard and Poor’s publishes the S&P/Case-Shiller Home Price Index which is based
on the arithmetic index proposed by Shiller (1991). This index uses sale prices instead of
log prices and is not strictly based on price differences like the indices based on the BMN
method. The justification for this change is an easier interpretation of the index in addition
to being able to treat houses differently based on the initial sale price [13]. The error
structure of this model is nearly identical to the original Case-Shiller method. That is, this
model also incorporates a heteroscedastic error term which grows with gap time.

The final index we will examine is an autoregressive index proposed by Nagaraja, Brown,
and Zhao (2010). This index is computed using all sales; however, as described below, repeat
sales are given more influence on the index because more is known about the house when
it has sold multiple times. In this conceptual sense, the autoregressive index is a repeat
sales index even though it is not based on the BMN methodology. This model is made up
of three components: an index, the effect of a home being in a particular ZIP code, and an
underlying AR(1) time series which automatically adjusts for the time gap between sales.
The ZIP code is included as an additional indicator of its hedonic value. This indicator has
some predictive value, although its value is quite weak by comparison with the price in a
previous sale, if one has been recorded. Consequently, the estimator that corresponds to this
statistical model can be viewed as a weighted average of estimates from a single sale and
repeat sales homes, with the repeat sales prices having a dramatically higher weight. As
noted, the time series feature of the model guarantees that the weight for repeat sales prices
slowly decreases in a natural fashion as the gap time increases. This model incorporates the
effect of gap time in two ways. It is included directly because of the underlying AR(1) time
series as indicated above and through the variance of the error term which grows as the gap
time increases.

2Hedonic information includes characteristics about a home such as the number of bedrooms and the
square footage.
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The main differences among these five methods are:

1. The BMN model is the only method which assumes the errors are homoescedastic;
in the house price setting, this means that the errors do not depend on the gap time
between sales.

2. The C-S, S&P/C-S, and OFHEO indices weight observations differently depending on
assumptions about the variance of the error terms.

3. The S&P/C-S method models prices instead of differences in log price between sales
of the same house and uses instrumental variables in the analysis.

4. The AR method uses an underlying autoregressive time series approach, includes single
sales, and location information (ZIP code).

In the following section, we analyze these differences in more detail. For a full technical
discussion, see Appendix A.

3 Criticisms of Existing Repeat Sales Methods

While traditional repeat sales methods have proved useful, a number of problems have been
highlighted. Perhaps the most obvious issue is that single sales are excluded, thus reducing
the sample size significantly. Sample sizes of data used in the actual Case and Shiller (1989)
and Meese and Wallace (1997) papers are shown in Table 1. The number of observations
which are eliminated is staggering. While data spanning a longer period will result in a
higher number of repeat sales, the number of newly built houses also increases. Therefore,
the proportion of repeat sales among all house sales does not increase as fast as one might
expect.

A second possible disadvantage when single sales are ignored is that in order to have
enough repeat sales, you must have a lot of sales to begin with. In other words, repeat sales
methods may only apply to large metropolitan areas. However, there is a housing trend
for all levels of geography, including local ones. For these smaller areas, there simply may
not be enough sales to construct a reasonable repeat sales index. The autoregressive index
alleviates this issue by including all sales in the analysis. Therefore, data are not ignored
and the index can be applied to any level of geography provided there are enough total sales,
not just repeat sales.

Among repeat sales homes, further cuts should be made if the house has significantly
improved or deteriorated between sales. This is because “house quality” would not have
been controlled in the intervening period. Quite possibly, the Case-Shiller percentages are
lower in Table 1 than those for Meece-Wallace because houses that underwent significant
renovation or were not “arms-length transactions” (i.e. houses sold cheaply to relatives,
etc.) were excluded, eliminating even more data.

A related issue is that in repeat sales models, a home is ignored until it is sold for a second
time. To see the impact, say that a house is sold first at time t and again at time t′. If the
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Table 1: Removing Single Sales

City No. Obs. No. Repeat Sales % Repeat Sales
Case-Shiller (1970-1986)

Atlanta, GA 221,876 8,945 4.0%
Chicago, IL 397,183 15,530 3.9%
Dallas, TX 211,638 6,669 3.2%

San Francisco/ 121,909 8,066 6.6%
Oakland, CA

Meese-Wallace (1970-1988)
Freemont, CA 23,408 3,405 14.5%
Oakland, CA 27,606 3,342 12%

initial data set includes sales until time t? where t ≤ t? < t′, this particular house would
neither be part of the data nor would it be used to compute the index value for time t. Now,
if the data is updated to include all sales up to time t′, the house is included and is used to
compute the index for both time t and time t′. Thus, indices must be revised retroactively.
This can be problematic if indices are to be used in a commercial setting. S&P/Case-ShillerR©

use a “chain-weighting” procedure to avoid revising the indices [14, p. 26].
Omitting single sales raises the issue whether repeat sales homes are representative of the

entire housing market. In any time span, houses can be categorized as follows: new home
sales, repeat sales with no changes in the house, repeat sales homes with changes, and houses
not sold [3, p. 290]. Repeat sales methods only use data in the second category. If repeat
sales homes are far different from other homes, then indices derived from them can only tell
us about changes in repeat sales homes, not the entire housing market.

If the set of single sales homes were similar the set of repeat sales homes, then the BMN
and succeeding indices would represent the housing market as a whole. The repeat sales
method would control for quality of a house along with the issue of varying composition of
houses sold over time. However, previous research has shown that this may not be the case.

In an entire sample period, a single sale can refer to a new home or an old home which
sells only once in the sample period. There is a hypothesis that a higher proportion of repeat
sales are “starter homes.” Young families tend to live in these so called “starter homes” and
later trade up to larger homes after only a few years [6, p. 271]. Clapp, et al. (1991) test this
hypothesis with inconclusive results. Meese and Wallace (1997) test this claim as well by
comparing hedonic models using an indicator for repeat sales and incorporating interaction
terms between repeat sales and hedonic variables. In their analysis, they found there was a
significant difference between repeat and non-repeat sales homes and “...repeat-sales homes
that did not change attributes are slightly smaller, and are in worse condition, than the
average for single-sale homes...The repeat-sales homes that did have attribute changes...tend
to be slightly larger and in worse condition, than the average for single-sale homes [9, 55].”

There is one aspect that varies with all houses: age. Case, et al (1991) claim that because
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Table 2: House and Sale Counts
City No. Sales No. Houses Training Pairs Test

Ann Arbor, MI 68,684 48,522 10,431 9,731
Atlanta, GA 376,082 260,703 59,222 56,127
Chicago, IL 688,468 483,581 105,708 99,179

Columbia, SC 7,034 4,321 1,426 1,287
Columbus, OH 162,716 109,388 27,601 25,727

Kansas City, MO 123,441 90,504 16,705 16,232
Lexington, KY 38,534 26,630 6,075 5,829

Los Angeles, CA 543,071 395,061 75,660 72,350
Madison, WI 50,589 35,635 7,714 7,240

Memphis, TN 55,370 37,352 9,372 8,646
Minneapolis, MN 330,162 240,270 46,206 43,686

Orlando, FL 104,853 72,976 16,147 15,730
Philadelphia, PA 402,935 280,272 63,082 59,581

Phoenix, AZ 180,745 129,993 25,830 24,922
Pittsburgh, PA 104,544 73,871 15,891 14,782

Raleigh, NC 100,180 68,306 16,372 15,502
San Francisco, CA 73,598 59,416 7,111 7,071

Seattle, WA 253,227 182,770 35,971 34,486
Sioux Falls, SD 12,439 8,974 1,781 1,684

Stamford, CT 14,602 11,128 1,774 1,700

age changes over time, repeat sale indices are biased. The time effect is confounded with the
age effect. Specifically, the general upward trend of the effect of time is countered by the
negative effect of age. As a result, no home will be exactly the same at any two points in
time, essentially violating the repeat sales assumption. Palmquist (1979) suggests adding in
a depreciation factor to the repeat sales procedure to account for this; however, this factor
must be independently computed which adds much complexity to the model [12, p. 337].

4 Comparing Repeat Sales Indices

In this section, we will explore the differences among the indices in an applied setting: in
terms of index construction and predictive performance.

The data are comprised of single family home sales from the twenty US metropolitan areas
listed in Table 2. These sales occurred between July 1985 and September 2004 and were for
homes which qualified for conventional mortgages. The total number of sales and number
of unique houses in the data are provided in Table 2 as well. For each sale, the following
information is available: address, month and year of sale, and price. We divide the sample
period into three month intervals so there are enough sales at each period to compute a
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stable index. In total, there are 77 periods, or quarters.
None of our analyses involve deleting repeat sales of significantly renovated homes as is

recommended by Case and Shiller. This is because we do not have indicators for such events
in our data set. Dropping such homes from the analysis could be expected to improve the
performance of all repeat sales indices, including the AR index.

We divide the data described above into training and test sets. Each model is applied
to the training data. The test set contains the final sale of homes which sell three or more
times in the sample period. For homes that sell only twice in the sample period, the final
sale is added to the test set with probability 0.5. Roughly 15% of the observations are in
the test set. The last two columns of Table 2 provide the size of the training and test sets.
The test data area used for prediction.

Prediction Results

Each method is fit using the training data set and the sale price for each house in the test set
is predicted. To compare performance across methods, we use the root mean square error

(RMSE) defined as: RMSE =

√
1
n

∑n
i=1

(
Pi − P̂i

)2

where Pi is the sale price of house i, P̂i

is the predicted price, and n is the number of observations in the test set.
In Table 3, we provide the test RMSE results for each method. There is no RMSE value

for the S&P/Case-Shiller method for Kansas City, MO. At the second step of the procedure,
some of the computed weights were negative preventing the final index values from being
computed. Recall, that this is the type of problem that the OFHEO method tries to avoid.

The main feature to note here is that the four traditional repeat sales methods have RMSE
values which are quite similar to each other. Hence, the “improvements” made to the BMN
model by the other methods seem to result in only minor changes to the RMSEs. However,
the autoregressive model clearly has the lowest RMSE values of all.

The RMSE value provides us with information about the following question: On average
how well does this model do when applied at the micro level? Prediction of individual house
prices is not the end goal for this test. Rather, it is a way to measure the effectiveness of
the method in capturing market trends–that is, when constructing an index. Being able to
measure market trends more accurately should result in better overall predictions. Using
this metric, the autoregressive index performs best.

Index Comparison

Despite the differences in methodology, the indices3 track each other exceptionally well, even
if the median price index is included. The correlations are given in Table 4 for Minneapolis,
MN (for clarity, we have removed the bottom half of the table). The high correlations
indicate that the general trends match across indices; however, if we plot the indices for
three sample cities Atlanta, GA, Minneapolis, MN, and Pittsburgh, PA as in Figs. 1-3, we

3The indices were computed using the estimates from the training set data.
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Table 3: Test Set RMSE (in dollars)

Metropolitan Area BMN C-S S&P/C-S OFHEO AR
Ann Arbor, MI 53,709 53,914 52,718 54,024 41,401

Atlanta, GA 35,456 35,494 35,482 35,503 30,914
Chicago, IL 42,923 42,960 42,865 42,976 36,004

Columbia, SC 42,207 42,263 42,301 42,290 35,881
Columbus, OH 30,550 30,543 30,208 30,545 27,353

Kansas City, MO 27,682 27,724 – 27,730 24,179
Lexington, KY 21,748 21,740 21,731 21,741 21,132

Los Angeles, CA 41,918 41,949 41,951 41,959 37,438
Madison, WI 30,979 30,942 30,640 30,950 28,035

Memphis, TN 25,311 25,306 25,267 25,311 24,588
Minneapolis, MN 35,402 35,538 34,787 35,565 31,900

Orlando, FL 30,187 30,215 30,158 30,228 28,449
Philadelphia, PA 35,308 35,333 35,350 35,338 33,246

Phoenix, AZ 29,295 29,334 29,350 293,56 28,247
Pittsburgh, PA 30,732 30,812 30,135 30,858 26,406

Raleigh, NC 26,873 26,856 26,775 26,855 25,839
San Francisco, CA 50,513 50,573 50,249 50,499 49,927

Seattle, WA 43,533 43,606 43,486 43,631 38,469
Sioux Falls, SD 21,527 21,576 21,577 21,525 20,160

Stamford, CT 67,661 67,668 68,132 67,579 57,722
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Table 4: Correlation Among Indices for Minneapolis, MN

BMN C-S S&P/C-S OFHEO AR Median
BMN 1.0000000 0.9999690 0.9999458 0.9999556 0.9995487 0.9933425

C-S – 1.0000000 0.9999734 0.9999986 0.9995790 0.9931094
S&P/C-S – – 1.0000000 0.9999715 0.9994943 0.9928684
OFHEO – – – 1.0000000 0.9995824 0.9930688

AR – – – – 1.0000000 0.9957070
Median – – – – – 1.0000000

can see that the actual value of each index differs. The plot on the left graphs the index
produced from each method; the plot on the right is the average index at time t subtracted
from the average index level at time t; from this plot, differences among the indices can be
more easily detected.

The BMN, C-S, and OFHEO indices are nearly all the same; this is not surprising as the
methodology used is nearly identical. The median, S&P/C-S, and AR, indices tend to differ
from the others; nevertheless, none of these indices is consistently higher or lower than the
BMN, C-S and OFHEO indices. We do note that the AR index is generally between the
median index and the traditional repeat sales indices. This is most likely because the median
index treats all observations as single sales and the repeat sales indices only include repeat
sales homes; the AR index, on the other hand, includes both repeat and single sales. The
repeat sales information, however, impacts the index more than the single sales [11].

This lack of pattern could reflect varying growth rates across the twenty metropolitan
areas. In Fig. 4, the percentage of repeat sales homes, a home which has been sold in a
previous quarter within the sample period, at each quarter is plotted for a selection of cities.
As expected, the percentage of repeat sales homes increases as we move through time. In
the long run, nearly all homes which appear as single sales will be sales of new homes, not
homes which have simply not sold in the sample period. The rates of increase differ widely
across cities. After nearly 20 years, the percentage of repeat sales homes is the lowest for
San Francisco, CA at 41% and the highest for Columbia, SC at nearly 86%. However, in our
data, we cannot distinguish between repeat sales homes and those which are old but have
not sold in the sample period; therefore more data are required to determine how differences
in growth rates across cities affect the indices.

5 Conclusion

The five indices, BMN, Case-Shiller, OFHEO, S&P/Case-Shiller, and the autoregressive
index are all based upon the repeat sales idea: that the previous sale price contains all
of the information about a house. The way this information is used is what differentiates
these indices. The BMN index assumes that the gap time between sales does not affect
the value of this previous sale price. The Case-Shiller, OFHEO, and S&P/Case-Shiller
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Figure 1: Indices for Atlanta, GA
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Figure 2: Indices for Minneapolis, MN
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Figure 3: Indices for Pittsburgh, PA
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Figure 4: Percentage of Repeat Sales by Quarter for a Selection of Cities
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indices assume that the gap time affects the random variation component of the regression
model. The autoregressive method takes this one step farther. Not only does the gap time
increase the error variance, it also decreases the covariance between the sale prices. The
higher the gap time, the lower the covariance between sale pairs. The Case-Shiller based
models also decrease the covariance but only by increasing the error variance. Furthermore,
the autoregressive method assumes that the previous price combined with the ZIP code
(geographical information) provide all of the information about a house.

Each of the traditional repeat sales indices attempt to correct problems from preceding
indices. The resulting indices do differ substantially as seen in the previous section. How-
ever, when comparing predictive power, none of these indices consistently outperform the
others leading one to feel that these improvements do not provide any substantive bene-
fits. Furthermore, the statistical implications of these improvements are often disregarded.
As a result, standard deviations and confidence intervals constructed from the results are
not accurate calculations of the variation in index estimates. These criticisms apply to the
Case-Shiller, OFHEO, and S&P/Case-Shiller indices.

When one has to choose among these indices, the question is: what makes a good house
price index? If usability is key, all of these indices are good–all are easy to implement and
update and do not require much information about a house. If statistical properties are
important, the BMN and autoregressive indices are best. A third measure is how well the
index represents trends in the overall market. Previous research has shown that repeat sales
homes are fundamentally different from single sales; in light of this work, it is difficult to
argue that such indices can truly represent the housing market. While the median index
and autoregressive indices exclude houses that do not sell, they do include single sales which
can make up a large proportion of total sales. Therefore, in this regard, these two indices
are more representative of the housing market. Furthermore, the autoregressive index makes
better use of the data by taking advantage of the additional information contained in repeat
sales. However, none of these standards indicates whether an index is truly measuring what
is supposed to. We feel the best yardstick in this regard is predictive ability. In this case,
the autoregressive index is the clear winner. In fact, the autoregressive model seems to best
embody what an index should represent and what housing indices are actually used for.
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A Structure

In this section, we provide a more technical description of each model discussing the statistical
properties of each method.
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A.1 The Bailey, Muth, and Nourse Model

Let there be T + 1 time periods where sale can occur from 0, 1 ,. . . , T and t be the subscript
for time. Using the BMN notation, for a pair of sales of a given house i, prices and indices
are related by the following expression:

Pit′

Pit
=

Bt′

Bt

Uitt′ (1)

where Pit is the sale price of the ith house at the tth time period. Let t be the time at the
first sale and t′ the time at the second (t′ > t) and let Bt denote the general house price index
at time t. Finally, Uitt′ is the error term and is assumed to have a log normal distribution:

log Uitt′
iid∼ N (0, σ2

u) where iid denotes independent and identically distributed [1, p. 934] .
The model is then fit on the logarithmic scale:

pit′ − pit = bt′ − bt + uitt′ (2)

where p, b, and u are simply the logarithmic versions of the terms in (1).
Essentially, the expected difference in log prices for two sales of a house is thought to

equal the difference in the corresponding log indices. The varying gap times between sales is
considered irrelevant and as a result, the error terms are asumed to be homoscedastic. This
issue is addressed in various ways in subsequent repeat sales indices.

A.2 The Case and Shiller Method

Like the BMN model, the Case and Shiller (C-S) setting is a model for differences in log prices.
Thus, we can simply adjust the model in (2) to incorporate an alternate error structure:

pit′ − pit = bt′ − bt +Hi,t′ −Hi,t + uit′ − uit

= bt′ − bt +
t′∑

j=t+1

vij + uit′ − uit (3)

where t′ > t and Hi,t is a Gaussian random walk. Therefore, Hi,t′ − Hi,t is simply the

sum of the intervening steps of the random walk:
∑t′

j=t+1 vij. Case and Shiller assume that

uit
iid∼ N (0, σ2

u), vit
iid∼ N (0, σ2

v), and that uit and vit are independent of each other for all
time periods and houses.

Case and Shiller use weighted least squares to fit the model to account for both sources
of variation. Their three-step procedure is described below.

1. Fit the BMN model in (2).

2. Compute the residuals of the regression in (2), and denote these as ε̂itt′ . These residuals

are an estimate of: uit′−uit+
∑t′−t

j=1 vij. The expectation of εitt′ is E
[
uit′ − uit +

∑t′−t
j=1 vij

]
=
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0 and the variance is V ar
[
uit′ − uit +

∑t′−t
j=1 vij

]
= 2σ2

u + (t′ − t)σ2
v because the errors

are independent of each other. The square of the residuals is an unbiased estimate of
this variance. To compute the weights for each observation, the squared residuals from
Step 1 are regressed against the gap time. That is,

ε̂2
itt′ = β0︸︷︷︸

2σ2
u

+ β1︸︷︷︸
σ2
v

(t′ − t) + ηitt′ (4)

where E[ηitt′ ] = 0. The reciprocal of the square root of the fitted values from the above
regression are the weights denoted by W−1.

3. To obtain the final index; run a weighted least squares regression. Basically, step 1 is
repeated while incorporating the weights. This matrix W−1 reduces the effect of sale
pairs with large gap times on the index estimates.

Both the C-S and S&P/C-S indices are computed using generalized least squares (GLS).
The standard GLS procedure would be to define the weight matrix W−1 as a matrix of
estimated variances. Such weights are generally used so that the best linear unbiased esti-
mates (BLUE) of the regression coefficients are obtained. However, in the C-S models the
estimated standard deviations are used instead. Consequently, the resulting index estimates
are unbiased but do not have the lowest possible variance. This is undesirable especially
if the regression estimates are to be used for prediction and prediction intervals are to be
constructed.

Another curious feature of the error process in these indices when there are more than
two sales of a house. A curious feature of the C-S model arises when examining the case of
multiple sales. For instance, say a house is sold thrice: one at time 0, a second at time h,
and a third at time h+ g. Recall that the variance of the difference of a pair of sales is given
by 2σ2

u + (t′ − t)σ2
v where t and t′ are the times when the sales occurred. Say, by chance,

we do not know about the second sale. Then, the variance of the difference of the first and
third sale should be 2σ2

u + (g + h)σ2
v . Ideally, the fact that there was a second sale which

was missing from the data should not be informative; that is, the variance of the estimates
should not change with this knowledge. However, this is not the solution if derived from the
regression equations. Rather, knowing there is a second sale at time h is informative. To see
why this is true, we start by writing the regression equations for both pairs of sales:

pi h − pi 0 = βh − β0 + εi 0 h (5)

pi h+g − pi h = βh+g − βh + εi h h+g (6)

where εitt′ includes both the random error and the cumulative random walk error. Adding
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(5) and (6), we obtain:

pi h+g − pi h + pi h − pi 0 = βh+g − βh + βh − β0 + εi 0 h − εi h h+g
pi h+g − pi 0 = βh+g − β0 + εi 0 h − εi h h+g

V ar [pi h+g − pi 0] = V ar [εi 0 h] + V ar [εi h h+g]

= 2σ2
u + hσ2

v + 2σ2
u + gσ2

v

= 4σ2
u + (g + h)σ2

v (7)

where V ar[·] is the variance function. The variance of the first and third sales, given the
knowledge of the second, is larger than if we had simply omitted it from the data.

A final issue with the C-S methodology is that in the second stage when weights are
computed, there is always a chance that for a particular sale pair, the computed weight may
in fact be negative. For such cases, the third step cannot be executed at all. Calhoun (1996)
outlines a method to circumvent this issue and is described in the next section.

A.3 The OFHEO HPI Method

The OFHEO index is published for each US state, census division, and nationwide. The
data are provided by the Federal Home Loan Mortgage Corporation (Freddie Mac) and the
Federal National Mortgage Association (Fannie Mae) and contain homes which qualify for a
conventional mortgage. This criterion excludes some high-end homes and homes bought at
subprime rates.

The OFHEO index method follows the Case-Shiller method; however, a few adjustments
are made. In the second stage of the method when the weight matrix is computed, it is
possible for some of the weights to be negative. Recall, the regression in (4) is fitted to
calculate the weights. The intercept of this regression could be negative and large enough to
offset the second term, resulting in a negative weight. In such situations, the third step of
the C-S method cannot be computed as all weights must be non-negative. To eliminate this
issue, instead of writing the model as in (3), the white noise component, uit is replaced by ui.
That is, there is only one error term for each house, not for each house and sale combination
[2, p. 9]. The resulting model is:

pit′ − pit = bt′ − bt +Hi,t′ −Hi,t + ui − ui

= bt′ − bt +
t′∑

j=t+1

vij (8)

Essentially, ui is treated as a fixed effect in the linear regression. As the C-S index looks at
differences between prices, ui drops out of the fitted model.

In the Case-Shiller procedure, Hit is a Gaussian random walk. Therefore, each step of the
random walk is assumed to be independent of the previous step. This is not the case for
the OFHEO index; the steps are assumed to be dependent. This means that the errors in
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the regression when fitting the model are not independent which is a violation of a standard
regression assumption.

For two sales of a house at time t and t′, recall:

Hit′ −Hit =
t′∑

j=t+1

vij

where vij are the random walk steps and E [vij] = 0 where E[·] is the expectation function.
If we compute V ar [Hit′ −Hit],

V ar [Hit′ −Hit] = V ar

[
t′∑

j=t+1

vij

]

= E

( t′∑
j=t+1

vij

)2
− E [ t′∑

j=t+1

vi,j

]2

=
t′∑

j=t+1

E
[
v2
ij

]
+

t′∑
j=t+1

t′∑
j′=t+1
j 6=j′

E [vijvij′ ]

= (t′ − t)E
[
v2
ij

]
+ (t′ − t)((t′ − t)− 1)E [vijvij′ ]

= (t′ − t)
(
E
[
v2
ij

]
− E [vijvij′ ]

)
+ (t′ − t)2

E [vijvij′ ] (9)

where j 6= j′. In the Case-Shiller model, E [vijvij′ ] = 0 for all j 6= j′ leaving V ar [Hit′ −Hit] =
σ2
v(t
′ − t). However, this assumption is not made when computing the OFHEO HPI index.

Consequently, at the second stage of the fitting procedure, the squared residuals are instead
regressed against the gap and squared gap times [2, p. 10]:

ε̂2
i = α0 (t′ − t) + α1 (t′ − t)2

+ ηi (10)

where ηi
iid∼ N

(
0, σ2

η

)
. Note that if E [vitvit′ 6= 0], Hit of (8) is no longer a random walk. This

is because the vit values are independent in a random walk so E[vitvit′ ] = 0. This causes
a problem statistically when there are more than two sales of a house. For example, say a
house sells at times t0, t1, t2, . . .. The log prices of the house pit0 , pit1 , pit2 , . . . can be thought
of as a time series. As repeat sales methods look at sale pairs, this would mean the first
and second sale would form a sale pair and the second and third sale would form a sale pair.
Therefore, these two sale pairs would have the form:

pi1 − pi0 = b1 − b0 + vi1

pi2 − pi1 = b2 − b1 + vi2

If Hit was a random walk, this is not an issue as E[vi1vi2] = 0 and the errors vit are not
correlated. However, if E[vi1vi2] 6= 0, then this regression would have correlated observations,
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specifically, autocorrelated errors. Independence of the observations, in this case sale pairs,
is a vital regression assumption which is violated.

One consequence of this violation is that while the estimates of the index values are
unbiased, they no longer have the minimum variance property. (Recall, they already do
not have this property because the weighted least square step uses the square root of the
estimated variance values instead of the square as weights.) Furthermore, the estimate of
the standard errors and any confidence intervals may not be valid.

Calhoun (1996) suggests an adjustment factor that can be applied to the computed index
so that the repeat sales index, a geometric index, behaves more like an arithmetic index.
Arithmetic indices have the advantage of having an easier cross-sectional interpretation.
Goetzmann (1992) first proposed this modification and Stephens, et al (1995) and Calhoun
(1996) show how to implement it when applying the OFHEO index to a particular house.

Jensen’s inequality states that for a concave function, such as log x, E [log x] ≤ logE [x]
where E[·] is the expectation function. If we substitute βt for x, E [log x] is what we compute
using the OFHEO index methodology whereas logE [x] is what is desired to obtain E [x].
Goetzmann proposed an adjustment to approximate E [x] from E [log x] for the repeat sales

case. A common approximation is E [x] ≈ exp
{
E [log x] + V ar[log x]

2

}
. Goetzmann suggests

that E [log x] is estimated by the log price index β̂t and V ar[log x] is estimated by σ̂2
v , the

variance associated by the gap time in the original Case-Shiller model [7, p. 9,12].
The variance of the error term for the OFHEO index is quite different than for the Case-

Shiller index, Calhoun proposes using (10) in place for V ar[log x] [2, p. 11]. To apply this to

individual houses, use P̂t′ = Pt exp
{
β̂t′ +

α0(t′−t)+α1(t′−t)2
2

}
[15, p. 393]. However, following

this procedure seems to give poor predictions. Therefore, in our data analysis, we skip this
adjustment when computing predictions using the OFHEO methodology.

A.4 The S&P/Case-Shiller Method

A variation of the interval and value-weighted arithmetic repeat sales estimator proposed
by Shiller (1991) is currently used to construct the S&P/Case-Shiller Home Price Index
released by Standard and Poor’s [14]. The S&P/C-S index is published for 20 Metropolitan
Statistical Areas (MSA) and nationally. For this commercial index, indices are computed
using a rolling three-month window. That is, a house sale in October is used for computing
the index for October, November, and December. This is done by listing the house three
times, for October through December, and weighting each “expanded observation” by 1/3
[14, p. 26].

The construction of an index on log price differences makes the indices considered thus far
geometric indices. For a better cross-sectional interpretation, an arithmetic index would be
favored argues Goetzmann [7, p. 9]. Goetzmann proposes an adjustment that can be applied
to the traditional repeat sales indices which approximate an arithmetic index (mentioned in
App. A.3). Shiller, however, proposes an entirely new model which we describe next.

As before, we have T + 1 time periods from 0, 1, . . . , T . For sale pair i, we can write this
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model as:

Pi0 = βt′Pit′ + Ui0t′ first sale at time 0,
0 = βt′Pit′ − βtPit + Uitt′ first sale at time t > 0

(11)

where Pit is the sale price of house i at time t, βt is the inverse of the index at time t,

and Uitt′
iid∼ N (0, 2σ2

u + (t′ − t)σ2
v) where σ2

v and σ2
u are the same variances from the original

Case-Shiller index. The index Bt = 1
βt

. As before, the price index at time 0 is set to 1 by

convention (B0 = 1).
As this index is formulated as an arithmetic index, it is value-weighted. As Shiller (1991)

argues, “The weighting may make a difference to the estimated index if price changes in
more valuable houses are different from price changes in less valuable houses [13, p. 110].”

Observe that the response vector in (11) contains mostly zeros as the vast majority of
sales do not occur in the base time period. However, as sales in the base period are the only
sales to not be multiplied by an index since B0 = 1 by construction, one must assume that
this is why they are the only prices that appear in the response vector. Moreover, it seems
misleading to create a model where future sales are used to explain a preceding sale. For
those sale pairs where the first sale is in the base period, this is exactly what occurs.

The S&P/C-S index looks in some ways nearly like the C-S index but on the price scale.
The main difference is that the error term, Uitt′ , is not multiplicative but additive for the
S&P/C-S index. However, the random walk error component and additional error terms
which result from the multiplicative structure of the original model are carried through.
Recall, the variance of the error terms in the Case-Shiller is: 2σ2

u + (t′ − t)σ2
v which is the

random variation for the difference of two sales of a house. However, the S&P/Case-Shiller
index is not constructed from differences in prices. Meissner and Satchell (2007) observe
this issue as well in their paper comparing this index with the Financial Times House Price
Index (a non-repeat sales index) used in the United Kingdom.

This model also assumes that prices do not reflect the true value of the house. That is,
there is some measurement error. In least-squares regression, the explanatory variables are
assumed to be fixed, not variable. Introducing measurement error into the prices violates
this assumption resulting in biased coefficient estimates. To accommodate this issue, instru-
mental variables (IV) are used during model fitting [16, p. 75-78]. This index is fit using a
three step process similar to the original Case-Shiller method.

A.5 The Autoregressive Model

A different method of using repeat sales information is to treat sales of a house as a time
series. Repeat sales information is automatically incorporated into a model of this type.
In particular, let pi,j,z be the log price of the jth sale of the ith house in zip code z. Let
µ+ βt(i,j,z) be the log price index for time period, t(i, j, z), and let γ(i, j, z) be the gap time,
or t(i, j, z)− t(i, j − 1, z), if it is the second or higher sale. Finally, zip code is modeled as a
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random effect: τz
iid∼ N (0, σ2

τ ). Then,

pi,1,z = µ+ βt(i,1,z) + τz + εi,1,z j = 1
pi,j,z = µ+ βt(i,j,z) + τz + φγ(i,j,z)

(
pi,j−1,z − µ− βt(i,j−1,z) − τz

)
+ εi,j,z j > 1

(12)

The error distributions are as follows: εi,1,z
iid∼ N

(
0, σ2

ε

1−φ2

)
,

εi,j,z
iid∼ N

(
0,

σ2
ε(1−φ2γ(i,j,z))

1−φ2

)
, and all εi,j are assumed to be independent. The adjusted log

price value, pi,j,z−µ−βt(i,j,z)−τz, is a first order autoregressive time series with autoregressive
coefficient φ. Maximum likelihood estimation is used to fit this model. Details can be found
in [11].

This model is in essence a repeat sales method as repeat sales information is included
through the autoregressive setup. However, single sales are not ignored in computing the
index. Rather, the index is computed roughly as a weighted average of both repeat sales and
single sale price information with much more weight on the repeat sales homes since more
information is known about a house if it has been sold more than once.

A second feature of this model is the way it handles the gap time between sales. First,
sale pairs with longer gap times are assumed to be less correlated than those sale pairs with
shorter gap times. The latent autoregressive component φγ(i,j,z) incorporates this feature
directly into the prediction process. Furthermore, the variance of predictions with long gap
times is much larger than those with short gap times. This is evident in the construction of

the error variance:
σ2
ε(1−φ2γ(i,j,z))

1−φ2 . This value increases as the gap time, or γ(i, j, z) lengthens.
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